New Hampshire

Stream Crossing Assessment and Improvement Project – Practical Collaboration and Cooperative Management

New Hampshire House Bill 648

Chapter 179 Laws of 2007

Comprehensive Flood Management Study Commission

Final Report

September 2008

Ensure installed culverts properly sized for passing flows (Wetlands permitting)	Culverts sized for proper hydraulic capacity	Properly designed culverts to adequately pass fish	Responsible for protection of public safety from flood hazards
Criteria development for use of aquatic resource mitigation funds to replace problem crossings	Responsible for stream crossing assets on state road network	State expertise on river/wetland aquatic organisms (fish) and wildlife	Display information in state EOC during flood events
State expertise on river and	Replace crossings with	Replace crossings with fish	Work with towns to fund

passage issues

Fish & Game

Department

Division of Homeland

Security and Emergency Management (DOS)

crossing upsize

mitigation funds

replacements with hazard

Department of

Transportation

asset condition issues

Department of

Environmental Services

stream processes

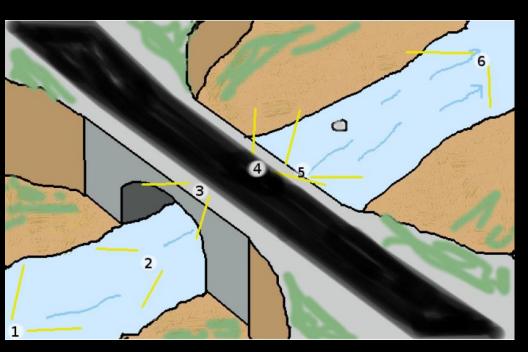
Ultimate goal Targeting of identified most at-risk vulnerable crossings for check during emergency situations/public response. Targeting for replacement using grant funds. Public safety with sound environmental and fish

passage goals at stream crossings

Culvert Assessment Field Form - Geomorphic & Habitat Parameters

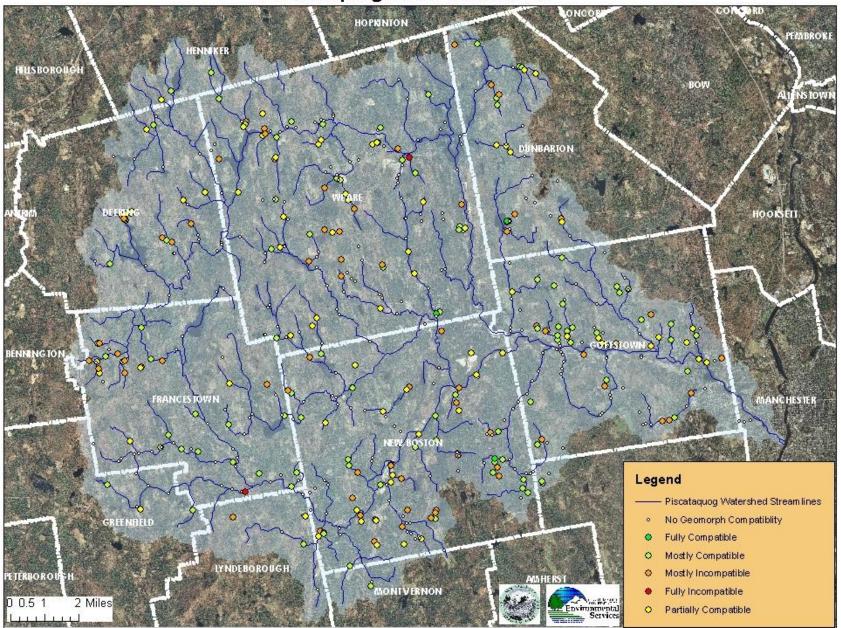
Structure ID	Unknown □			known 🗆	Structure Number	
Observer(s)/ Organization(s)					Date & Time	
Town			Datum		Latitude (N/S)	
Location					Longitude (E/W)	
SGA Reach ID					Stream Name	
Road Name					Road Type	paved gravel trail railroad
# of shoulder lanes					Crossing Condition	new old eroding collapsing rusted
# of travel lanes		Materials	Plastic-Co	Concrete stic-Corrugated lastic-Smooth	Structure skewed to roadway	yes no
# of culverts at crossing		Structure Mat	Tar Sto Steel-Cor Steel-St	ne rugated mooth	Flow Conditions	unusually low typical low higher than average
Overflow pipe(s)	yes no	Str	Aluminum-(Other:		Conditions	flood conditions

Geomorphic and Fish Passage Data

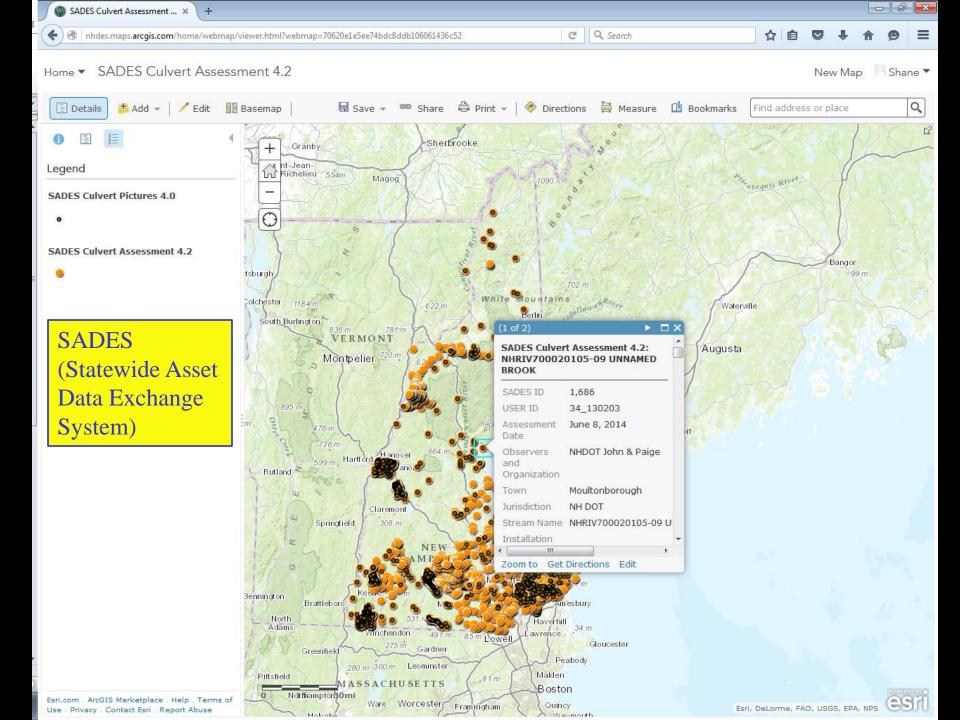

Consol					
General					
Floodplain filled by roadway approaches: entirely $\Leftrightarrow {}^{t}_{t}$ of floodplain partially $({}^{t}_{t} - % \text{ of floodplain})$ not significant					
Structure within % mile downstream of a significantly steeper segment of stream: yes no unsure					
Culvert slope as compared with the channel slope is: higher lower about the same					
Water depth in the crossing matches that of stream: yes no (significantly deeper) no (significantly shallower)					
Water velocity in crossing matches that of stream: yes no (significantly faster) no (significantly slower)					
Upstream					
Structure opening partially obstructed by (circle all that apply): wood sediment wood & sediment					
deformation of culvert none other:					
Steep riffle present immediately upstream of structure: yes no					
If channel avulses, stream will: cross road follow road cross and follow road unsure					
Estimated distance avulsion would follow road: (ft.)					
Angle of stream flow approaching structure: sharp bend (45° - 90°) mild bend (5° - 45°)					
naturally straight channelized straight					
Evidence of streambed erosion or aggradation immediately upstream of culvert erosion aggradation none					
Culvertinlet: at grade cascade free fall					
Upstream bankfull widths: 1.) 2.) 3.) 4.) 5.) (ft.)					
Reference bankfull widths: 1.) 2) 3.) 4.) 5.) (ft.)					

New Hampshire's Stream Crossing Assessment form

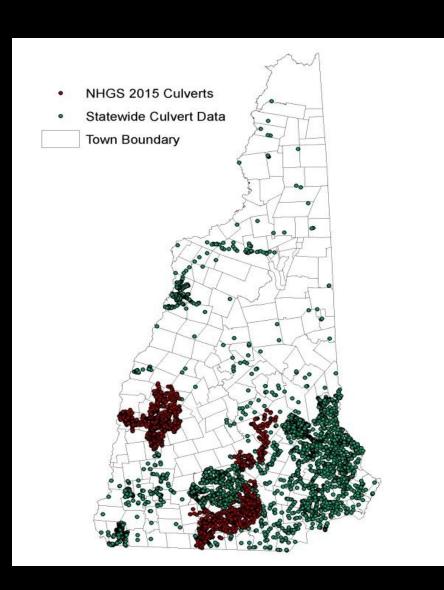
- 2 Forms 1 for culverts; 1 for bridges and arches
- 66 Parameters total
- Parameters allow for three compatibility characterization types:
 - Geomorphology
 - Aquatic organism passage
 - Hydrology
- ArcPad and iPad app data entry also supported
- Multiple stakeholders in design and annual modification
- NHGS has been the steward of the form since 2009.


2009-2014 – Culvert assessments in NH funded largely through DES

Quality Control Review Process



- 6 photos per crossing
- Cross-reference of photos with data
- Issues/comments to collectors


Results of Geomorphic Compatibility Rankings Piscataquog River Watershed

New Hampshire by the Numbers

Time	Culverts assessed
2009 – 2014	1087
2014 – 2015 (RPCs)	1040
2015 (NHGS	1323
summer interns)	

Total: 3450 (~21.5% of state)
*Of known crossings in the state
Intersection of NHD and road network
Many more crossings that we do not
know about

New Hampshire State Stream Crossing Steering Team

New Hampshire Department of Environmental Services (lead)

- New Hampshire Geological Survey
- Wetlands Bureau (Lori Sommer)

New Hampshire Department of Transportation (co-lead)

New Hampshire Fish and Game Department (co-lead)

New Hampshire Division of Homeland Security and Emergency Management (partner)

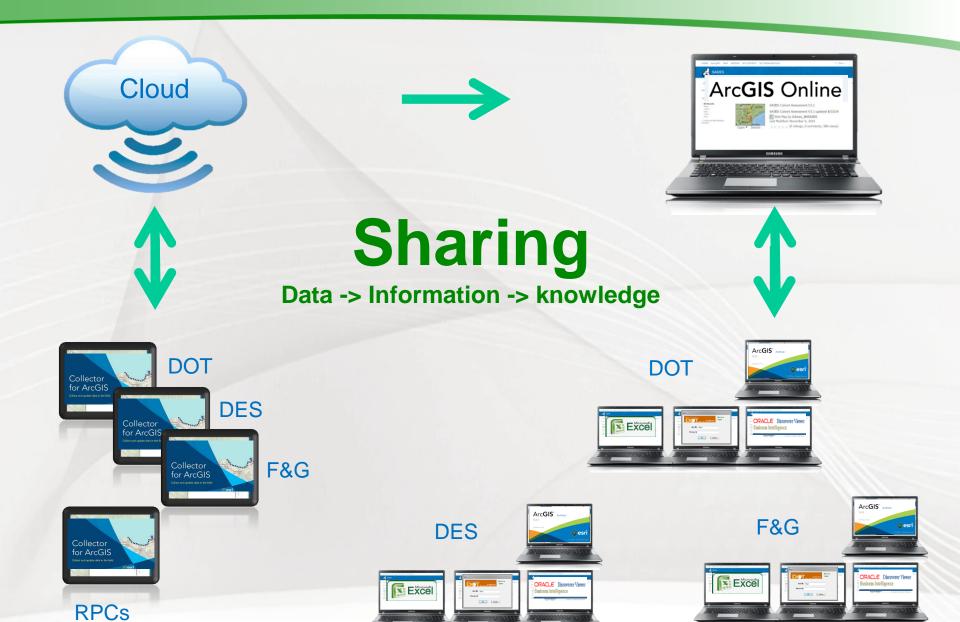
- Based on a "governance model" (distributive management structure) that directs the operation of the team
- Each agency is responsible for condition data and criteria development based on specific missions and expertise
- All assessments are coordinated minimize duplication of effort
- Consistent messaging to the public on data outputs and scoring
- Starting this summer collection of both transportation and environmental portions of protocol (one stop shopping).

Statewide Asset Data Exchange Service (SADES)

SADES is a cloud based solution to effectively and uniformly collect critical infrastructure data on a statewide level that provides specifications, methods, training, and data exchange services for all stakeholders.

SADES

Data -> Information -> knowledge



SADES

Data Sharing

Stream Crossing

NHDOT NHDES Geomorphic Condition Compatibility Data Core Data Data NH F&G Aquatic Organism Passage Data

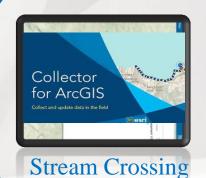
SADES

SADES Initiatives

SADES Initiatives

ADA Ped Signals

Sidewalks



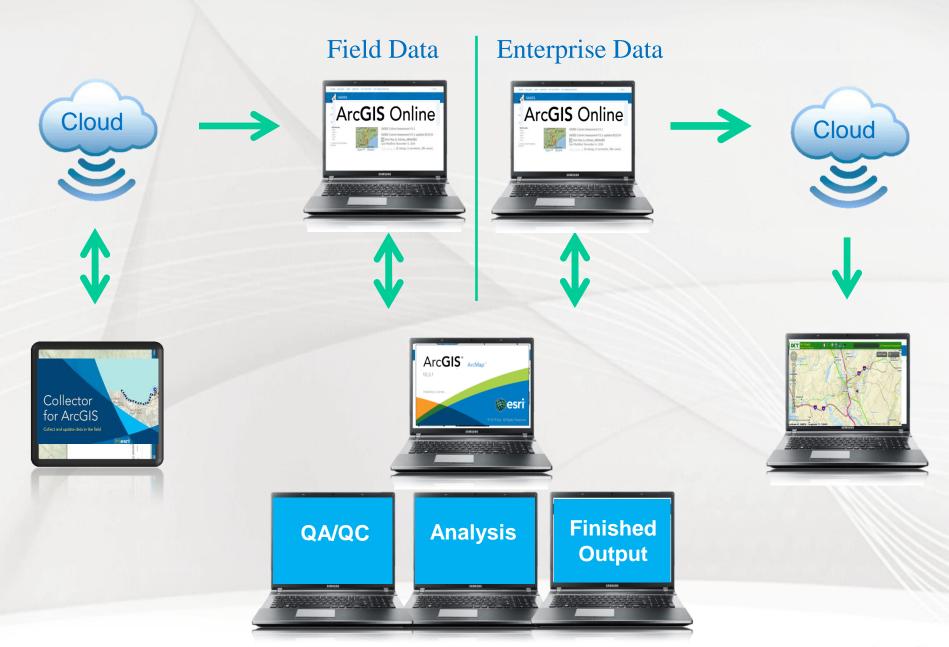
Senior Management SADES

Organization Governance

SADES Working Group Technology
Transfer Center
(T2)

SADES Initiatives

Guardrail



ADA Ped Signals

Sidewalks

Next Steps

Questions ?

